programmers resources
  http://www.intel-assembler.it/  (c)2017 intel-assembler.it   info@intel-assembler.it
 
Search :  
Lingua Italiana    English Language   
Index
 
just an empty assembly space
just an arrow Intel Platform
just an arrow Article & Guides
just an arrow Download Software


23/01/2009 Featured Article: How to remove Buzus Virus (permalink)




:::3140719:::
Bottone Scambio Directory Pubblicitaonline.it
Home Page | Articles & Guides | Download | Intel Platform | Contacts

Google
 


Bookmark and Share
Download 
Tell a friend



VGOPHONG Phong lighting and specular highlights

Theory, practice of phong lightnin and shade model

(by timj/vertigo)

VGOPHONG.TXT - Phong lighting and specular highlights. Theory, practice and explaination of the phong lighting and shading model.

This article is online from 2951 days and has been seen 4456 times




-----------------------------------------------------------------------------

  VGOPHONG.TXT - Phong lighting and specular highlights. Theory,
 practice and explaination of the phong lighting
 and shading model.

-----------------------------------------------------------------------------

  by TimJ/Vertigo

  "I am he, as you are he, as you are me, and we are all together"

  email: tim@legend.co.uk
  irc:   #coders #vertcode


  revision history:

  16/02/97      v1.0    -       Initial version


-----------------------------------------------------------------------------
 INTRODUCTION
-----------------------------------------------------------------------------

  First off, I hope this doc is of use to some people, and maybe other
  people will find it interesting.

  Recently, I've been thinking a lot about phong shading and lighting.
  There was something that was bugging me. I couldn't quite put my finger
  on it. It was something I knew to be true, but I had to explain it to
  myself. It all started when I was chatting to Vector about true phong
  shading. We'd both recently looked at Voltaire/OTM's doc on fast phong
  shading (again).

  We were (among other things) chatting about lighting functions in our
  3D engine. It was about specular highlights and the way normal (fast)
  phong lighting doesn't yield specular highlights on a flat plane
  (all normals pointing one way). This got me thinking. I thought, well
  of course it doesn't, because the light calculated at each point will be
  the same (because all normals are the same). This annoyed me because I
  knew it wasn't true -- but I couldn't remember why. It's all to do with
  the light vector and the view vector (and keeping them constant).

  Volatire's phong method also doesn't yield specular highlights in the
  center of polygons. Oh, and his method emulates the equation given
  exactly -- it's not a tradeoff. But then again, it's also just the
  same as using gouraud. I'll explain later.

  Then I remembered the actual theory behind the lighting equations. It
  stuck me that people tend to get mixed up in code and forget about the
  theory behind it.

  What I'll do is go through the theory, how it's implemented.
  Based on that I'll then address what this doc is actually about --
  highlights in the center of polygons and on flat planes.

  If you think this doc is a bit slow, forgive me, but you can never please
  everybody :)

  [Oh, important point.. this is generally about the phong equation. You
   can do it per pixel or per vertex, either way it's the phong equation.
   Just because you gouraud shade doesn't mean you can't have phong style
   specular highlights.]


-----------------------------------------------------------------------------
 LIGHT RAY REFLECTION
-----------------------------------------------------------------------------

  I was going to explain the theory behind light ray relfection and the
  spread of the ray across a surface depending on the angle of incidence.
  But but then I realized I'd have to go into they physics behind spectral
  reflectivity too, so I won't :)

  If there's enough demand for it, email me and I'll put it in.


-----------------------------------------------------------------------------
 PHONG'S SPECULAR HIGHLIGHTS
-----------------------------------------------------------------------------

  We need to understand how the phong lighting equation is made up. Let's
  define a few useful values:


  ^N
  |
    L˙˙˙  |     R        V
     \˙˙  |    /      __/
      \˙  |   /    __/
       \  |  /  __/
\ | /__/
 \|//
     -------------.--------------
  P
  ^
  point under consideration


  It's important you know what these values actually are:

  N = surface normal
  L     = unit vector between point and light
  V = unit vector between point and view
  R     = light reflection unit vector (mirror of L about N)


  First, the diffuse relfection is given by the Lamertian Relfection
  equation:

    diffuse = Kd * (N dot L)

  Where Kd is the diffuse relfection constant. (N dot L) is the same as
  the cosine of the angle between N and L, so as the angle decrease, the
  resulting diffuse value is higher.

  Phong gave spectral reflectivity as:

    diffuse + Ks * (R dot V)^n

  Which is:

    Kd * (N dot L) + Ks * (R dot V)^n

  Where Kd is the diffuse component and Ks is the specular compoenet. This
  is the generally accepted phong lighting equation. Ks is generaly taken to
  be a specularity constant (although Phong defined it as W(i).. see later).

  As the angle between the view (V) and the reflected light (R) decreases,
  you will get more specularity.

  The clever thing about Phong's equation was that it gave a neat way to
  calculate the specular intensity 'bump' around the light reflection
  vector (R). The larger the exponential power (n) the smaller and more
  intense the specular intensity bump. Hence specular highlights.


-----------------------------------------------------------------------------
 IMPLEMENTATION OF PHONG'S EQUATION
-----------------------------------------------------------------------------

  Most people simplify this equation somewhat, for speed. We begin with :

    Kd * (N dot L) + Ks * (R dot V)^n

  The obvious thing we'd like to remove is (R dot V). Since we don't
  want to calculate the light relfection vector (mirror of light incidence
  around the surface normal) -- because it's expensive. Blinn introduced a
  way to do this using an imaginary vector H. It's then reduced to (N dot H).
  H is defined as halfway between L and V (after L and V are normalized).

  H is therefore (L + V) / 2. You will see that the angle R dot V is double
  N dot H -- but this doesn't matter as you can alter the specular
  exponential value (n) to compenstate. This gives us the equation :

    Kd * (N dot L) + Ks * (N dot ( L + V / 2))^n

  Up until now we've ignored the ambient factor, this is because it's
  damn obvious and has little consequence on the math.. we'll put it in
  now

    Ka + Kd * (N dot L) + Ks * (N dot ( L + V / 2))^n

  Which is easily implemented. You only need three vectors: the surface
  normal, the light vector and the view vector. It's obviously advised
  to do this equation in object-space.


  Another way to remove R dot V, is by replacing it with N dot L :

    Ka + Kd * (N dot L) + Ks * (N dot L)^n

  This assumes you will always get the maximum specularly reflected light,
  no matter where the view is. Here's why :

  If we assume V is always the same as R, then the angle between N and V is
  the same as N and L --

  ^N
  |                     A = angle between N and L
    L˙˙˙  |     R (also V)      B = angle between N and V
     \˙˙A | B  /
      \˙ /|\  /
       \/ | \/
\ | /
 \|/
     -------------.--------------


  Angle A and B are the same (of course, since R is the mirror vector of L).
  So, N dot V becomes the same as L dot N.

  This makes life easier and faster. The results completely ignore the
  position of the view; so it's like having a reflective surface that always
  reflects the maximum amount of specular light towards the view.

    (normally, as the angle between the view and the reflected light
     increases, you get less specularly reflected light).

  It's just a trade off.

    Ka + Kd * (N dot L) + Ks * (N dot L)^n

  or

    Ka + Kd * cos(theta) + Ks * cos(theta)^n

  where cos(theta) is N dot L. Most likely, the above equation is the
  one most people use. Also, since more implementation assume V is constant
  across the scene (normalized.. at infinity) then using N dot L can be
  acceptable. But it does have some dire consequences.


-----------------------------------------------------------------------------
 REAL TIME PHONG SHADING
-----------------------------------------------------------------------------

  This is what was causing the confusion. Voltaires text on phong shading
  (OTMPHONG.TXT) used the equation

    color = specular + (cos x) * diffuse + (cos x)^n * specular

  for calculating phong lighting. This is the same as the last equation we
  just disussed. He then went on to explain the specular intensity 'bump'
  through the (cos x)^n term of the equation.

  (note: phong shading is done by recalculating the lighting equation at
   each pixel -- this is done by interpolating the vertex normals across
   the polygon and re-evaluating).

  Since there is just one angle term in the equation (N dot L), he realized
  he could dispense with normals and just interpolate the angle.

  Remember :

    Ka + Kd * cos(theta) + Ks * cos(theta)^n

  You only need to interpolate theta, then you can do a lookup table for
  the correct colour created like so:

  for( theta=0 ; theta < 90 ; theta++ )
  {
    table[i] = Ka + Kd * cos(theta) + Ks * pow( cos(theta) , specExp ) ;
  }

  The problem with all this is that the original equation was inaccurate,
  so the results will be inaccurate. However, Voltaire does point this
  out, and state that highlights can't be inside polygons.

  But, as Zog pointed out to me, you can get exactly the same effect with
  gouraud, by setting up the palette in a similar way. This method is
  basically the same as gouraud, you're just interpolating an angle instead
  of an intensity.. as Zog put it, "it's fucking gouraud revisited" :)

  I just thought I'd clear this up, as people tend not to believe it's
  real, and think it's some kind of trick (if you use the same equation
  in a true shader, you'll get the same results).
  It's also important for the next section (the equation at least).

-----------------------------------------------------------------------------
 PHONG'S SPECULAR HIGHLIGHTS (REVISITED)
-----------------------------------------------------------------------------

  As pointed out, phong shading requires the interpolating of vertex
  normals across the polygon, and recalculation of the equation.

  Right, here's where more confustion comes in. To simplify things,
  people tend to treat V as a constant over the entire scene.

     N
     L        |    / V (view)
       (light) \      |   /
 \    |  /
   \  | /
     \|/
 -------------.--------------
      P



  V is not constant though.. it is dependant on the point under
  consideration (P). So making V constant, is like sticking the view at
  infinity (this is done by normalizing the view vector).
  This means that the falloff of the specular light at sharp angles
  between the surface and view is not taken into account (it's linear).
  So the highlight will be too big and intense at sharp angles (the
  falloff will be linear in respect to the view position). Also, the
  highlight won't move correctly with the view.

  You can probably see that the same thing can be done for L..
  ie. directional lighting. Putting L at infinity affects specular fall
  off with respect to the light and the view. But I'm sure everyone knows
  the implications of directional lighting (it's just like having a light
  really really far away).


  As explained earlier, dispensing with V altogether can give you a nice
  speed up using N dot L instead of R dot V.

  Let's look at the consequences of dispensing with V. This is like
  assuming you have a perfect reflector.. like a mirror. The surface will
  always reflect the maximum amount of specular light towards the view --
  the highlight will seem to 'stick' to the light relfection vector and not
  change shape or size, no matter where you put the view.

  But, given this, you just have to interpolate N for the polygon

    (remember, we need (N dot L) and (N dot H) where is H = L+V/2)


-----------------------------------------------------------------------------
 SPECULAR REFLECTION
-----------------------------------------------------------------------------

  Now we get to the crux of the problem. All that time ago back at the
  start, I mentioned a plane with all the normals pointing one way.

  The thing to remember is this, the lighting is *not* just dependant on
  the surface normal. It's a function of the light vector and the view
  vector. The important value is V, as V affects how specular light is
  reflected.

  If V is properly calculated, for a flat surface, the angle between the
  view and the normal (which is constant) will alter.

      N
V                    ^
\ \                  |
 \   \               |
  \     \            |
   \       \         |
    \         \      |
     \           \   |
       -------.-----------.---
      p1          p2


  The angle at p1 is obviously sharper than the angle at p2. Even though
  N is the same at both points. It all becomes obvious now. Unless you
  calculate V correctly, the reflected specular light over a flat surface
  will be the even at any point on it.

  At this point you might be thinking : "what if V is put at infinity and
  L is calculated properly? -- won't that do the same job?"

  In a word, no, because V is the important vector. We have to remember the
  original equation where the specular light was a function of R and V.
  N would be constant, V would be constant, so specular light would just be
  a function of V -- ie, not very accurate at all.

  So, we're left with the following equation:

    Ka + Kd * (N dot L) + Ks * (N dot ( L + V / 2))^n

  So, basically, in a nutshell, you've got to recalculate V for the new
  point under consideration. If you do that, you'll get specular highlights
  on flat planes.

  If you have directional lights (L at infinity) then the highlight will be
  incorrectly positioned and spread -- since the angle between any given
  point and the light will be more or less the same (to an infintecial
  degree). On a flat surface you'd be depending on the angle the view makes
  with the surface. Although, this isn't too much to worry about --
  I think directional lighting is a choice, not a compromise.

    [ Oh yeah, in the first section I said Phong defined Ks as W(i). Well,
      this meant that Ks was a function of the angle of incidence between
      the light and the surface. So specularly reflected light was dependant
      on the incoming angle as well as the outgoing angle. Phong never
      actually defined W(i) though -- so it's usually ignored. It does give
      you another parameter for your surface to play with though. ]

-----------------------------------------------------------------------------
 REAL TIME PHONG SHADING (REVISIED)
-----------------------------------------------------------------------------

  Ok, so now we know that V and L are important factors of the equation.
  Voltaire's phong shading method is completely correct for the equation
  he used (but as mentioned, it's basically the same as gouraud).

  What he did was place L at infinity and make the surface a perfect
  reflector (that always reflected the maximum specular light) towards
  the view (where ever it was). I explained all this earlier anyway :)

  That meant there was only one angle to interpolate, but it also meant
  that on flat surfaces it was impossible to get correct highlights.
  (polygons are flat :)

  However, Voltaire's method is more accurate than normal gouraud for the
  same lighting equation (due to the non-linear lookup table).
  However, you can do the same with gouraud.. it just another way of
  implenenting it (and quite redundant).
  His method won't extend to other equations though.

  What's annoying is when people just say his method doesn't work and is
  a load of crap, without explaining why.


-----------------------------------------------------------------------------
 CLOSING WORDS

 "picture yourself in boat on river with tangerine trees and marmalade skies"

-----------------------------------------------------------------------------

  Well, I guess I've managed to confuse almost eveyone. What I've tried
  to do is explain the factors of the phong lighting equation -- what parts
  do what, and why it works.

  I've probably made loads of typo's and got different bit's mixed up --
  but hell, I don't care :)  With any luck, I might not get flamed.
  If I have mixed something up, forgive me -- it get's hard to track what
  you have/have not said etc.. and it's not easy without some good
  diagrams :)

  There are a couple of sections I've left out.. I started the one on
  light ray reflection, but left it out. I also has a section on optimizing
  the equation :

    Ka + Kd * (N dot L) + Ks * (N dot ( L + V / 2))^n

  But I didn't get it finished (it's based on the routines I use in my
  3D engine). There are no square roots, tables, divides or pow()'s used.
  Yet it still produces the same results (to a reasonable degree of
  accuracy -- any errors are covered up by (a). the number of intensities we
  can actually display and (b). the precision of the fpu).
  If there's enough demand then I'll put it in.

  At the end of all this, an interesting thing to note is that all these
  equations have no physical basic what so ever -- they're just equations
  that fit real work observations. Light is actually better represented as
  radiation -- but let's not get into that now :)

  Greets:
    Oh god, I don't know.. um.. people I know.. hmmm
    (no particular order)

    Vector
    Vastator
    Phred
    Gooroo
    Midnight
    aM
    Eckart
    codex
    PGM (where ever he may be)
    BigCheese
    Pel
    Wog (Zog, whatever)
    Crom
    God
    All at Abstract Entertainment

    [plus anyone I've missed]

    Flames/comments go to: tim@legend.co.uk


-----------------------------------------------------------------------------

  "Living is easy with eyes closed. Misunderstanding all you see.
   It's getting hard to be someone, but it all works out. It doesn't matter
   much to me."



Top
Download 
Tell a friend
Bookmark and Share



Similar Articles

2D/3D Rotation asm demos
Source code for 2D and 3D rotation
(by Ash [NLB/BD])

3D Rotating Cube Assembler source
An improved asm code for 3d graphics
(by Arno W. Brouwer)

3D Texture Mapping theory and asm code
a mid-length text about texture logic and coding
(by Sean Barrett)

4K 3D Asm Demo
4096 byte 3D assembler graphical demo
(by Jari Kytöjoki)

Basic Introduction to 3D Programming
A short doc about howto plot in 3D
(by Synergist)

Math.inc: General 3D math functions
A library with many math functions for 3d graphics
(by John McCarthy)

Perspective Transforms
A two page document with the perspective formulas
(by Andre Yew)

REFRACTION 4k intro
Assembler graphic demo, 3D chessboard
(by G.O.D.)

Star Field
3D Assembly star field
(by VLA)

Three Dimensional Rotations For Computer Graphics
A short document on 3D rotation
(by VLA)

Three Dimensional Shading In Computer Graphics
A brief intro on 3d shading theory
(by VLA)

VGA Trainer Program
A course for graphic programming in Pascal/ASM
(by Grant Smith Denthor of ASPHYXIA)

X-Sharp 3-D animation package v22
3D ball demo with zoom, share and move
(by Michael Abrash)

Zed3D programming guide
A compact reference for 3d computer graphics
(by Sébastien Loisel)

 Tags: 3d


webmaster jes
writers rguru, tech-g, aiguru, drAx

site optimized for IE/Firefox/Chrome with 1024x768 resolution

Valid HTML 4.01 Transitional


ALL TRADEMARKS ® ARE PROPERTY OF LEGITTIMATE OWNERS.
© ALL RIGHTS RESERVED.

hosting&web - www.accademia3.it

grossocactus
find rguru on
http://www.twitter.com/sicurezza3/
... send an email ...
Your name

Destination email

Message

captcha! Code